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ABSTRACT

In this paper we study the existence of nontrivial solutions for the
boundary value problem

~-Au-=-Au-u |“|2*-2 =0 in @

u = 0 on 3%

when & C R is a bounded domain, n 2 3, 2% = %%5 is the critical exponent

for the Sobolev embedding H;(Q) Lp(ﬂ), A is a real parameter.

We prove that there is bifurcation from any eigenvalue Aj of -A and
we give an estimate of the left neighborhoods ]Aj*, Xj] of Aj' j €N, in
which the bifurcation branch can be extended. Moreover we prove that, if

Ae AL*, A

VA e Ry

multiplicity of Xj.

[, the number of nontrivial solutions is at least twice the

The same kind of results holds also when {1 is a compact Riemannian
manifold of dimension n » 3, without boundary and A is the relative
Laplace~Beltrami operator.

AMS (MOS) Subject Classifications: 35a15, 33932, 58E99
Key Words: Boundary value problem, critical Sobolev exponent, bifurcation,
critical points, eigenvalue, variational problem, Riemannian

manifold
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SIGNIFICANCE AND EXPLANATION
e

This paper deals with the problem of existence of nontrivial solutions
for a nonlinear elliptic boundary value problem in which the nonlinear term
involves the "critical Sobolev exponent”, which is associated with a loss of
compactness. The motivation for investigating this type of problem comes from
the fact that mathematical models of some interesting problems in geometry
(Yamabe's problem) and in physics (existence of nonminimal solutions for Yang-
Mills functionals) have this character and involve a lack of compactness.

Variational arguments are used here to prove some bifurcation and multiplicity

results for these problems.
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BIFURCATION AND MULTIPLICITY RESULTS FOR NONLINEAR

ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENTS

Giovanna c.rani’), Donato rbrtunutoz), and Michael struwes’

Introduction

let 2 be a bounded domain in R®, n>3, 2*= ;%% the critical exponent for the

Sobolev embedding H‘ (%) » 13(R).  Yor a real parameter A € R consider the boundary

0
value problem
-Au-lu-uh.llz.-2 =0 in
(0.1)
ulgg = 0

corresponding to the functional tx :H;(Q) + R given by
L]
0.2)  £,0w) =% [} alulHax - 1720 [ lulFax

Since the embedding H;(Q)*Lz.(ﬂ) is not compact the functional fx in general will not
satisfy the Palais-Smale condition.
However, recently Brezis and Nirenberg (5] were able to establish the existence of
positive solutions of (0.1) for any A in a certain range ]X',X1[ . where
xj, jen (X1 < 12 < evs ¢ Xk) , denote the eigenvalues of the operator
-A:H;(Q) + 5V - (H;(n))', and \A*>0 is some constant depending on n and 0.
In this paper we study the existence of nontrivial solutions for (0.1) also for

A > to obtain bifurcation from any eigenvalue Aj. We give an estimate of the left

1

1,2) Supported by Ministero P.I. (Italy) and by G.N.A.F.A. (CNR).
3) Supported by SFB72 of the Deutsche Forschungsgemeinschaft. The third author is

indebted to the University of Bari for its kind hospitality
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mOreover we prove that, if A € Jit, ) j(, the number of nontrivial solutions of (0.1) ig
at least twice the multiplicity of lj (cp. Theorem 1.1).

Our results are based on the observation that although the Palais-Smale condition does not
hold globally for tx (cp Remark 2.3) it is satisfied locally in a certain energy range
(cp. Lenma 2.1 or (5, Remark 2.2]).

We observe that the tools used in proving the above results do not depend on the shape of
f and on the dimension n.

With suitable modifications the existence and bifurcation results also apply to problem
(0.1) posed on a compact Riemmanian manifold without boundary of dimension n > 3

(cp. Theorem 1.3),

We thank Prof. H. Brezis for his useful comments.
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1. Results.

1
tet Mul = ( | |Vu)lan)?, fal, = ¢ lulPax)'/P  genote the norme in B! (3),

) o
1P (), respectively, and let

2 2 1
S = inf {tul®/ Iulz' tueH, () \ {0}}

*
denote the best constant for the embedding H;(Q) + 12 (2.

Theorem 1.1: For )\ > 0 let A, = min {lexdj), and_suppose

A, -X<s [meas (0)]-2/n
Let _m be the multiplicity of A_. Then problem (0.1) admits at least m pairs of
nontrivial solutions

(o, V), —u, (A1} k= 1,...m
such that

luk(l)l + 0 as PR A+.

Remark 1.2: If Q is starshaped, it is well known that (0.1) admits only the trivial

solution for ) € O (cp (5], (8]).
A result analogous to Theorem 1.1 holds for the problem

(1.1 -AHu - Au - ul\:llz.~2 =0

on a compact Riemannian manifold M of dimension » 3 and without boundary. Here AH
is the Laplace-Beltrami operator on M, ) > 0 a parameter and 2* = n—f—'i' as before.

Denote by R'(M)  the closure of C*(M) with respect to the norm

1
= ) (val? + lwhan®
M

PRI N SR N B POk s T ) P et e ) et \ AL SO .




which in local coordinates on a covering { 'rh) of M is given by

%,

tul, = ( ) )
hTh 1,3,=1 i

1
 § oSt g:_+ (ui?) /g ax)
3
g"j denoting the metric tensor, and g = det (913), Note that the quadratic form
| |Vul2am s only positive semidefinite in H'(M), then the operator
"
TR NUIRY Yooy

possesses eigenvalues U, < B, € .c.ly <ooo which are 2 0 (cp. Appendix 1 of [4}).
1 2 ) 3

Theorem 1.3. For X > 0 let u = min {ujlx < xj) and suppose
2/n

YRR NN N
M

Let m be the multiplicity of .. Then problem (1,1) admits at least = pairs of

nonconstant solutions

{u, ™), - “k(“} K= 1,.00,m

such that

luk(k)lM +0 as A+,

-4-




2. Proof of Theorems 1.1, 1.3

The proof of Theorem 1.1 requires some lemmata

lemma 2.9: For any )\ € R the functional tx(lee(o.z)) satisfies the Palais~Smale

condition in ]-=, %Sn/ 2 in the following sense:

(P.8.) If c< & sn/? and {“m} is a sequence in H; () such that as m + =« t

-1
tx(u-) +q, “x(“n) + 0 strongly in H  (2), then (un) contains a_subsequence

converging strongly in H;(ﬂ)-

Remark 2.2. An analogous result has been proved in (5]. Nevertheless for completeness we

give here a proof of lemma 2.1 which is slightly different from that contained in (S].

Proof. lLet A € R, and suppose (uﬂ} is a sequence in n;(ﬂ) such that as m+ =

1 .n/2 !
(2.1) f,la) sc <15 \
(2.2) af,(u ) + 0 strongly in O]

As in (S, estimates (2.18)] from (2.1), (2.2) we obtain that

(2.3) {luml) is bounded

Hence we may extract a subsequence (“m} (relabeled) such that

- 1
(2.4) u e weakly in Ho(ﬂ)

(2.5) u, *u strongly in tP()  for any p e [1,2*(

5=




Noreover u is a solution of (0.1). 1Indeed, letting ¢ € c, (), by (2.4), (2.5) and
0

{2,2) wa deduce that
< d!x(\l), ¢>=« d:x(u“), $ >+ ol1) = oY)

Hence u weakly solves (0.1). But by reqularity results (cp.{5], (6], [7), and [10)) it
follows that

(2.6) uer™n)

and hence that u is regular and is a solution of (0.1) in the classical sense.

To show that u, + u strongly in B; Q) as m+ =, let v =u, -u. Testing (2.2)
with Vp YO obtain

(2.7) ol1) =« th(u.). "

- é(Vqun + Ival2 = Autv v, = lu+ v ] 2.-2(“"'-)".) dx
By (2.4) and (2.5) we have
(2.8) [q(Vulvy = Al + v )v, )dx = o( 1)

Whence from (2.7), (2.8) we deduce that

'2

(2.9) tv 12 = ] ju+ v )P P uv v ax ¢+ ol)
* m o m am

Now we claim that

2 2¢
(2,10) A Ivulz. + o(1)

In fact, by using (2.5) and (2.6), we have

2%=2 2¢
(2.11) | é (u+v-)|uwml v & -i,) Ivll ax| =
ulx)
3 2022 .
RO AU AL AL
6=
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1 2.
= [(2¢=1) | | |v_ + tul v_u dtdx |
Q0 m m

2

< const. [ ] (lu) lvnlz.;1 Ivg! Jup?*~Yyax ] = otm)
Q

and (2.10) easily follows from (2.9) and (2.11).
Since
< dtx(u-). w > = oft)
we have
2¢ 2 2
lumlz. = ‘]’(lvuml - Huml Yax + o(1)

Inserting into the expression for fx(um) we obtain

1 2 2 -
(2.12) £,(0) = < £(|Vun| Mu ) ax + o(1)
1 2 2 1 2
-K‘}z(lv\:l « Alu] )dx*;sjz |an| ax + o(1)

Moreover, since u is a solution of (0.1)
J (th:||2 - llulz)dx -) lulz.dx =< dfl(u), u>=0
9 f2
Whence in particular
2 2
(2.13) J t1%al® = Aul©rax > 0
Q
From (2.12) and (2.13) we now infer
2

lv-l < nt'x(u-) + o(1)

Then, by (2.1), for m sufficiently large we obtain

-7=




2 n/2
(2.14) Iv_l $c, <8

¥Now, by (2.10)

w_u‘ < s""’h_l" + o)

Or equivalently

2,.2%/2 2¢-2
lv-l (s Ivnl ) € ofl1)

Teking account of (2.14) this implies that v + 0 strongly in H; (®),  concluding the
proof. s

Remark 2.3. Complementing the preceding lesma we have a non-compactness result for
energies 2> -:; sn/2. In fact we now show that for any ) € R there exists a sequence

1 s1:/2 ,

{“n} c n;(m satisfying the P-8 assumptions in ¢ = = which is not relatively

compact in u;(m.
Let X, e 1 and choose a function ¢ € c;(m such that ¢ # 1 in a neighborhood N

of X,. The functions u N

n=2
2 4
u(x) = {n{n~2)u]
H 2 22
I +hex 17] 2
solve the egquation
L2
2¢.2 in &

~Au = u ju
'} ll, U'

(2.185)




Note that u e u;m) and moreover

1
(2.16) (u.} is uniformly bounded in Hy(f)

Also we easily derive that as m + +»

(2.17) u +0 in L3(\W)
u!

-
(2.18) uw, *0 in Lloc(ﬂ\{xo})

Hence also
(2.19) u, >0 weakly in HIQ) (m s )

Using (2.17) and (2.18) we deduce that

2 2»
(2.20) £(u)=Y%] (Pu [“ax-Y¢ ) Ju 1“ax +o0 (1) =
ATm g Y £ “n

22 4 oty (cpl1,91).

s

Sl

Also using (2.15) - (2.18) we obtain

-2
ldfx(u-)lu_1(n) - .uﬁ J h(Vuu Vv - v, lu“ ] v)dx + o(1) = o(1)
VEHO(Q)
Ivi - 1

By

1
Hence hJ satisfies the (P-S) assumptions with c-gﬁﬂ,hwwu,w(LW)ud .

(2.20), (u-) cannot be relatively compact in H;(ﬂ).

levma 2.4: Por A > 0 let A, = inf {lex < Aj) and set

LI H(lj) (the closure is taken in H;(ﬂ)). >|
X’>X+ :

M= ML)
. xj!x’ 3




em————

whare A
bl LB}

2 mess(l
B, : = sup £,(u) ¢ o, megalB)

ueM

moreover, there exist constants 0,

tx(u) > 6X for any u @M, Jul = L3

2

(A,) denotes the sigenspace of -A corresponding to Lj'

> 0, 61 e]o.sxt guch that

-«
dx <

2o ) e oY) e
f Q

Proof: For any u € M_ we have
ENCURR’Y (vul? = atal®rax =¥ | lul
aQ Y]
<, =2 jul2ax - W& | tul?*ax ¢
N Q
<lp (A, = 1) meas(@)
Let
*
glo) =% (x;xmeum)z/“ o -V 0%
Then
sup fx(u) < gup glp) = % ()+-X)n/2nenl(ﬁ)

ueM_ p>0

proving the first part of the lemma.

Since for u € M_ we obtain

J (val? - atu®rax > (4 - & 1ut?

n
while
Pl
lulz, < const Iulz'
The second part of the claim is immediate. »

~10-

12

ax




By lemmata 2.1, 2.4, Theorem 1.1 can be deduced by the following result . Bartolo, Benci, !

Fortunato (cp Theorem 2.4 of (3)).

1
Theorem 2.5: let H be a real Hilbert space with norm f§e¢§ and suppose 1 €C (H,R) is i

a functional on H satisfying the following conditions:

Iy) I(uw) = I(-u), I(0) = O,

I,) There exists a constant 8 > 0 such that the Palais-Smale condition (P-S) holds in

10,80%

13) There exist two closed subspaces V, W C H and positive constants p, 8, B°,

with § < ' < B such that \
. (1) I(u) € B' for any uvuew .
(i41) I{u) > 8§ for any uev, fut =p
(111) codim V < +» and dim W > codim V

Then there exists at least

dim W - codim V

pairs of critical points of I with critical values belonging to the interval

§,8) . o

We are now ready to prove Theorem 1.1. ‘

Proof of Theorem 1.1: Let H = HJ(®), I ~f,, V=N, w=H_, 8=2s"2 g =g,

1
8§ = Gx, P =0, and apply Theorem 2.5 together with lemmata 2.1, 2.4. g !

For the proof of Theorem 1.3 the following result from (2] is needed. l
|

Lemwa 2.6 : 1f (v ] 1is a sequence in H'(M) such that Vg * 0 weakly in x'(nz as

m+ ® then




Proof : By (2, Theorem 2.21] for all ¢ € R'(M), € > 0

1

2 - 2 2
“'2' € (8 +e¢) IVQIZ + Ae) 141,

with a constant A{(€) independent of ¢, Applying this inequality with ¢ = A\ and

noting that by weak convergence v n * O(m + +») we have
lvml2 + 0 m >t

we deduce that for any € > 0

-1

v 12 < (s

2
wd 20 +edv b+ o(1)

The lemma follows on letting ¢ + 0. -

Proof of Theorem 1.3

Going through the proof of Lemma 2.1. - keeping in mind Lemma 2.6 and the fact that,
for any sequence (v_} in u'o tending to 0 weakly in this space, v i, = ol(1) -

it is now immediate that also for the functional on H'(M)
. 2 2 2*
g =% (vl e -1 [juia

corresponding to problem (1.1) the Palais-Smale condition is satisfied in the interval
1 2
]'.'; 8“/ [-
Moreover it is easy to see that the same estimates of lemma 2.4 continue to hold
(obviously lj- A u;(n), meas 2 are replaced respectively by ye B H'(M), ] an.

M
Then Theorem 1.3 can be proved by using again the abstract critical point Theorem 2.5, g

~12~
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ABSTRACT (Continued)

when 2 C R® is a bounded domain, n > 3, 2* = %:5 is the critical exponent

for the Sobolev embedding H;(Q) LP(R), X is a real parameter.

We prove that there is bifurcation from any eigenvalue Aj of -A and
we give an estimate of the left neighborhoods ]Xj', Aj] ot Aj, jenN, in
which the bifurcation branch can be extended. Moreover we prove that, if

A e Xj*, lj[, the number of nontrivial solutions is at least twice the

multiplicity of Aj.

The same kind of results holds also when I is a compact Riemannian
manifold of dimension n » 3, without boundary and A is the relative
Laplace-Beltrami operator.




